This is an archived version of the course. Please find the latest version of the course on the main webpage.

Chapter 4: PyTorch for Automatic Gradient Descent

Other Gradient Descent Optimization Algorithms

face Luca Grillotti

Remember how we defined our optimiser?

learning_rate = 0.2
optimiser = torch.optim.SGD(params=list_parameters, lr=learning_rate)

PyTorch actually provides plenty of optimisers. Many of those optimisers are more efficient than SGD.

Among the most popular optimisers we have: Adam and RMSProp. The way those optimisers work is out of the scope of this course.

Adam

optimiser = torch.optim.Adam(params=list_parameters)

RMSProp

import torch
optimiser = torch.optim.RMSprop(params=list_parameters)

Exercise:

Try to replace SGD with those optimisers in your code. Do they produce better results?