Introduction to Deep Learning with PyTorch
Chapter 4: PyTorch for Automatic Gradient Descent
Other Gradient Descent Optimization Algorithms
Remember how we defined our optimiser?
learning_rate = 0.2
optimiser = torch.optim.SGD(params=list_parameters, lr=learning_rate)
PyTorch actually provides plenty of optimisers.
Many of those optimisers are more efficient than SGD
.
Among the most popular optimisers we have: Adam
and RMSProp
.
The way those optimisers work is out of the scope of this course.
Adam
optimiser = torch.optim.Adam(params=list_parameters)
RMSProp
import torch
optimiser = torch.optim.RMSprop(params=list_parameters)
Exercise:
Try to replace SGD
with those optimisers in your code.
Do they produce better results?