This is an archived version of the course. Please find the latest version of the course on the main webpage.

Chapter 4: Accessing DataFrame rows and columns

Accessing rows via slicing

face Josiah Wang

Slicing also works for both .loc and .iloc. So you can obtain a DataFrame with a subset of columns.

>>> df.head()
                       # Type 1  ... Generation  Legendary
Name                             ...
Bulbasaur              1  Grass  ...          1      False
Ivysaur                2  Grass  ...          1      False
Venusaur               3  Grass  ...          1      False
VenusaurMega Venusaur  3  Grass  ...          1      False
Charmander             4   Fire  ...          1      False

[5 rows x 12 columns]

You can slice using the index labels.

>>> pokemon_subset = df.loc["Ivysaur":"Charmander"]
>>> print(len(pokemon_subset))
4
>>> print(pokemon_subset)
                       # Type 1  ... Generation  Legendary
Name                             ...
Ivysaur                2  Grass  ...          1      False
Venusaur               3  Grass  ...          1      False
VenusaurMega Venusaur  3  Grass  ...          1      False
Charmander             4   Fire  ...          1      False

[4 rows x 12 columns]

You can also slice using the row number (starting from 0).

>>> pokemon_subset = df.iloc[1:4]
>>> print(len(pokemon_subset)) 
3
>>> print(pokemon_subset)
                       # Type 1  ... Generation  Legendary
Name                             ...
Ivysaur                2  Grass  ...          1      False
Venusaur               3  Grass  ...          1      False
VenusaurMega Venusaur  3  Grass  ...          1      False

[3 rows x 12 columns]