
Brief introduction to Git

Oana Cocarascu

Git is a Version Control System (VCS) that allows you to manage changes and different versions of files.
VCS also simplifies working in group projects as it allows multiple people to work on the same files at the
same time. In programming, it is often the case that you want to save a working state of the code. VCS
is useful as it maintains a history of the changes and it allows developers to revert and to go back to an
older version of the code. You can check a snapshot of your code at any time and see the difference between
different snapshots (called “versions” or “commits”).

A Git repository (repo) consists of the following main components:

• working tree (or working directory) consists of the files that you are currently working on. It also
contains a .git directory with the index and object store

• index (or staging area) for the files you wish to record in the object store

• object store that keeps track of all snapshots

The basic Git workflow is as follows: you modify files in the working tree, you stage the changes you
want to be included in the next commit, and you commit these changes with a message describing what
you changed. Committing means taking the files from the index and storing them as a snapshot in the
repository. The object store records snapshots of the files after each commit and each snapshot knows the
snapshots before and after it. You can checkout a recorded snapshot from the object store. This will update
the working directory to reflect that version of the project.

To run the following commands you need to be inside a working directory of a Git repository:

• git help explains what commands do. You can prefix any command by help to get help specific to
that command (e.g. git help add).

• git init <directory> creates a new directory as a working directory and initialises an index and an
empty object store.

• git clone <repository> <directory> creates a clone of repository under the given directory. If the
directory is omitted, Git creates the clone under the same name as the name of the repository.

• git status shows the status of the project. You can see which files in the working directory have
changes not recorded in the index, which branch you are working on, and which files are not tracked
by Git.

• git diff shows what has been created or changed.

• git log shows the snapshots in the object store.

• git add <filenames> adds the given files to the index.

• git commit -m "Message" creates a new snapshot in the object store based on the files that have
been added to the index. The message should be meaningful and should describe what changed as it
will be associated with the snapshot. If -m "Message" is omitted, Git will start up an editor for you
to type your message in.

1



• git push pushes snapshots from your local object store to an object store of a remote repository. If
the repository was created using git clone then git push will push back to that.

• git checkout will undo changes you have made to files in your working directory, reverting the files
back to the version in HEAD (HEAD is a reference to the last commit).

• git checkout <commitID> will make the working directory reflect the snapshot at commitID which
can be found using git log.

Until now you have been working on the master branch. If you want to work on a feature, you can create
a branch and work on that branch. Once your code is ready, you can merge that branch into master.

Figure 1 shows the workflow in basic branching. At Common base, a new branch is created. Two more
commits are pushed to the master branch (using git add, followed by git commit and git push). Three
commits are pushed to the other branch (similarly using git add, followed by git commit and git push).

Figure 1: Basic branching

• git checkout -b feature creates a new branch and switches to it at the same time (note that I
named the branch feature, you can give any name you like)

• git branch feature creates a new branch feature but does not switch to that branch

• git checkout feature switches to the feature branch. Thus if you are on a different branch and
want to switch to master, you will run git checkout master

Figure 2 shows what happens when you merge into the master branch.
Make sure you do not have any uncommited changes before merging (there are solutions for this but we

are looking at basic branching/merging). Assuming you are on the feature branch, to merge that branch
into master you need to run:

• git checkout master that switches to the master branch. Note that git resets your working directory
to look like it did the last time you committed on that branch

• git merge feature that merges the feature branch into the current branch (master in this case as
we already switched to the master branch)

2



Figure 2: Basic merging

Sometimes the merging does not go smoothly. This happens if you changed the same part of the same
file differently in the two branches you are trying to merge. You will see something similar to:

Auto-merging some file.py

CONFLICT (content): Merge conflict in some file.py

Automatic merge failed; fix conflicts and then commit the result.

If you type git status, you will see:

both modified: some file.py

Git adds standard conflict-resolution markers to the files that have conflicts so it makes it easier to resolve
conflicts. Your file will have a section similar to:

<<<<<<< HEAD:some file.py

here you have the version on master branch because master is the branch where you ran the merge

command

=======

here you have the version from the feature branch, the one you are trying to merge

>>>>>>> feature:some file.py

To fix this, keep only the code in the version you want to be on the master branch, remove the markers,
and then run git add on the file. Do this for every file that could not be merged.

For more information about Git commands you can:

• run man gittutorial in a terminal

• check Git page https://git-scm.com/

3


