Shell tutorial

QOana Cocarascu

This tutorial is intended to give you an overview of Linux and basic shell commands.

The shell is a program that takes commands and gives them to the Operating System (OS) to
perform. On Unix systems (e.g. Linux), command line interfaces (CLIs) such as the shell used to
be the only available user interfaces. Nowadays, there are also graphical user interfaces (GUIs).
Both Linux and Unix provide various types of shell:

e sh (Bourne shell)

e bash (Bourne Again shell)

e csh (C shell)/tesh (TC shell)
e ksh (Korn shell)

You can interact with the shell using a program called terminal emulator, shortly a “terminal”.

There are several terminals available on the lab machines such as terminal and terminator. You
can also press A1t + F2 to open the “Run Command” dialog box where you type the name of the
terminal you would like to use. After opening a terminal, you will see a shell prompt.

To get a clean window to work on (i.e. clearing the terminal) use the command clear or use
Ctrl + L.

Exercise 1: Type some characters and press enter. For example, if I type abcde, I would get
an error message as follows: abcde: Command not found. Clear the terminal.

Shell:
e To check the shells installed on your Linux type cat /etc/shells
e To check which shell you are using type ps -p $$

e Another option to check which shell you are using is echo $0

Command parsing: First token is the command whereas the remaining tokens are arguments
to the command. Example: For cat etc/shells, cat is the command and etc/shells is the
argument for the command.

For any command, you can check out the documentation (called man page) by typing man
commandName. Example: man ps will show the documentation for the ps command. To exit the
documentation, type q.

Exercise 2: Type the three commands above and check what they return.

History: You can see the list of the last commands by typing history.

e If you type history N and replace N with a number you will get the last N remembered
commands.
Example: history 10 will show the last 10 commands.

e To move through the previous commands, press the up-arrow key to go back, and the down-
arrow key to go forward.

Exercise 3: Type the command history and inspect the result. Navigate through the com-
mands using the arrow keys and click on one of the commands. Type history and check the
new results.

The files are organised in a hierarchical directory structure (a tree-like pattern of directories)
where the first directory is called the “root” directory. The root directory contains files and subdi-
rectories, which in turn can contain files and subdirectories.

File paths:

e / is the “root” directory

e ~ is your home (and initial) directory

e . (period) references the current directory
e .. references the parent directory

At any given time you are located in a single directory called “working directory” whose name
you can find using the command pwd. Upon logging in, the working directory is set to your home
directory (each user has his own home directory). Listing the files in the working directory is done
using the command 1s. Changing the working directory is done using the command cd followed
by the pathname of the directory you want to change to. Pathnames can be of two types: absolute
pathnames and relative pathnames.

Basic commands:

e pwd prints the working directory
e 1s lists files and directories

e cd changes directory

— cd .. to go up one directory

cd ~ to go to your home directory
— cd is same as above

— cd ../../someDirectory to go up two directories then to someDirectory

An absolute pathname begins with the root directory and follows the tree branches until it
reaches the path of the wanted directory. /usr/bin is a directory where most user program ex-
ecutables are found. This means that, from the root directory, there is a directory called “usr”
which contains a directory called “bin”.

Exercise 4: Type the following commands and check the output:
cd /usr/bin

pwd

1s

In contrast with an absolute pathname that starts from the root directory, a relative pathname
starts from the working directory. It uses special notations to represent relative positions: . (the
current directory) and .. (the parent directory).

Exercise 5: Type the following commands and check the output:
cd /usr/bin
pwd

We can change the working directory to /usr (i.e. the parent of /usr/bin) in two ways:

1. using absolute pathnames:
cd /usr
pwd

2. using relative pathnames:
cd ..
pwd

Next, type the following;:
cd /usr
pwd

We can change the working directory from /usr to /usr/bin in two ways:

1. using absolute pathnames:
cd /usr/bin
pwd

2. using relative pathnames:
cd bin
pwd

Variations of 1s:
e 1s someDirectory lists the files in the someDirectory directory (e.g. 1s Downloads)
e 1s -1 lists the files in the working directory with detailed contents

Along with arguments, you can also pass options to commands. Optional arguments (such as
the one in 1s -1) are preceded by a minus sign.

Exercise 6: Check the man page of 1s to find out which argument orders the files by time of
last modification.

Exercise 7: Go to the Downloads directory and type the command 1s followed by the com-
mand 1s -1.

For example, one of the results I get is:
-rw-r——-r—— 1 ocbll lai 2385836 Sep 13 2018 report.pdf

The first entry is a 10-character string representing the file permissions. The first character
represent the file type: ‘-’ for a regular file and ‘d’ for a directory. The next 3 groups of 3
characters indicate the file permissions for (1) the user, (2) group members, (3) anyone else.
The 3 characters set represent the rwx (read, write and execute) rights. Dashes indicate that
a particular permission in the rwx sequence has not been enabled.

The next entry represents the number of links to another program or file elsewhere on the
system (do not worry about this).

Then, we have the name of the user who owns the file, the name of the group that has
file permissions in addition to the file’s owner, file size (in bytes), the last time the file was
modified, and finally the name of the file /directory.

Files: File names in Linux are case sensitive: File.txt is different from file.txt. When
typing a filename into the shell, once you have typed enough characters to uniquely select a single
file, press the TAB key and the shell will complete the filename for you. If there are several
alternatives, CTRL-D will list all the matching files and then it will redisplay the partial command
line. If the file name has spaces, you need to escape them with backslash. Some examples of
filename extensions are:

o text files .txt

e generic file .dat

e comma separated file csv

e shell script (bash/sh) .sh

To create an empty file: you can use the touch fileName command, replacing fileName
with the name you want to give to the file.

In the following, you can write to files using your editor of choice. For a command line text
editor, check the end of the tutorial for a quick introduction to vim.

To view text files: you can use the command less fileName where fileName is the name
of the file you want to inspect. You can use the Page Up, Page Down, and the arrow keys to move
through the text file. To exit less type q. Alternatively you can use the command cat fileName.

Exercise 8: Create a file, write some characters in it, and then view its contents using the
less command.

Manipulating files:

e mkdir dirName creates a directory

e rmdir dirName removes a directory (must be empty)

e rm fileName removes a file. It can have the following optional arguments:

.Cp

-1i representing interactive mode where you are asked if you are sure you want to remove
the file (press y if you want the file to be removed and any other key otherwise)

-r representing recursive in which case all its directories and contents are removed

cp filel file2 creates a copy of a file
cp filel file2 file3 ... directory copies one or more files to a directory
optional arguments:

* —1 interactive, with warnings about over-writing
* —r recursive, copies directories and contents

* —p preserves file modification times (otherwise timestamp is current time)

mv filel file2 renames a file (i.e. “moves” it)
mv filel file2 file3 ... directory moves one or more files to a directory

optional argument for interactive -1

Be careful with rm. Linux does not have a command to undo a delete. Once you delete
a file using rm, it is gone.

Wildcards: There are special characters, called wildcards, that allow you to select filenames
based on patterns of characters.

e * matches any string
Example: 1s *.txt refers to all files ending .txt

e 7 matches any single character
Example: 1s file?.txt and 1s file?7.txt
1s file?.txt can refer to filel.txt, file2.txt, or any other similar file

e [...] matches any one of the enclosed characters
Example: 1s file[12].txt matches filel.txt and/or file2.txt
1s £x[12] .txt matches any file beginning with £ and ending with 1.txt or 2.txt

Exercise 9: Create two directories in your home, templ and temp2. Create a few files in each
directory, with different extensions. Use the 1s command to show all files in the directories
and the files with a particular extension. Then delete some of them. Use 1s to see the new
contents of the directory.

Fundamental commands:
e head fileName shows the first few lines of a file (default 10)
e tail fileName shows the last few lines of a file (default 10)

e For both head and tail you can add -n # to show # lines instead of default number of lines
Example: head -n 20 file.txt

e cat concatenates files
Example: cat filel.txt file2.txt file3.txt

e wc fileName shows line, word, and character count

Output redirection: Shell can redirect output using the following:
e > standard output to file (overwrite)

e >> standard output to file (append)

Filters:

e A filter reads input from the standard input (stdin) and/or files, performs an operation (e.g.
searching, sorting, summarising) and then writes the resulting output to the standard output
(stdout).

e Filters can be linked together into a pipeline so that the output from one filter is the input
to another filter.

Exercise 10: Try the following examples:

e Save directory listing
1s -1 > temp.txt

e Look at the 10 most recently modified files
1ls -1t | head

e Look at only the 10 oldest files
1s -1t | tail -n 10

e Concatenate several files into a new one
cat filel.txt file2.txt > allfiles.txt

Show only one scroll length of content at a time
cat filel.txt | less

Exercise 11: Putting everything together. Do the following:
e create a directory in your home directory calling it temp

e create several files and directories in the newly created directory, and then create files
and directories in those directories

e rename several of the files and directories
e delete one of the directories that has other files and directories in them

e copy a file from one of your subdirectories into temp

VIM

To create and edit a file, you can use vim, a command line text editor. In vim, everything is
done via the keyboard.

There are two modes in vim: insert and edit. In input mode you can enter content into the
file. In edit mode you can move around the file, delete, copy, search and replace, etc. A common
mistake is to start entering commands without first going into edit mode or to start typing input
without going into insert mode.

The command vim file.txt opens the specified file or creates a new file with the given name
and opens it. You always start off in edit mode so you need to switch to insert mode by pressing
i. You can tell when you are in insert mode as the bottom left corner will tell you. Type a few
characters. To get back to edit mode press ESC.

Once back in edit mode, there are several ways in which you can save the file and exit (need to
press enter to complete the command):

e :w saves the file but does not exit
e :wq saves the file and exits

e :q! discards all changes since the last save and exits

To undo the last action, use u.

Commands to navigate the file:
e Arrow keys move the cursor around
e $ moves cursor to the end of the current line

G moves to the last line

w moves to the beginning of the next word

nw moves forward n words (eg 2w moves two words forward)

b moves to the beginning of the previous word

nb moves back n words

Commands to delete content:
e x deletes a single character
e nx delete n characters

e dd deletes the current line

SSH

Secure shell (ssh) is a network protocol that allows secure and remote machine access. To access
DoC Linux servers from outside the college network, you can use the following command:
ssh username@shelll.doc.ic.ac.uk
where username is your DoC user-name. You can use shell2; shell3 or shell4 instead of shelll.

To copy data to, from, or between different hosts, you can use scp. It uses ssh for data transfer
and provides the same authentication and same level of security as ssh. The following commands
may be of use:

e Copy the file f.txt from a remote host to the local host
scp username@remotehost:f.txt /some/local/directory

e Copy the file £.txt from the local host to a remote host
scp f.txt username@remotehost:/some/remote/directory

e Copy the directory foo from the local host to a remote host’s directory bar
scp -r foo username@remotehost:/some/remote/directory/bar

Example: scp f.txt username@shelll.doc.ic.ac.uk:/homes/username/Downloads/

